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Infrared Detectors Generate Torrents Of Data

• Megapixel and larger infrared detector arrays in 
several technologies are available covering the 
1 – 30 µm spectral range

• Particularly, in the thermal infrared (> 3 µm), data 
rates can be quite high due to background emission

• The challenge: in our particular case, each array has
– 1024x1024 light sensitive pixels divided into 4 outputs
– “Reference pixels” added to all 4 outputs; mimic "dark" 

detectors; located on the left and right edges of the image
– A “reference output” that averages signal from 8 reference 

pixels; brought out through a 5th output channel
– A data rate of 1290x1024 pixels in 2.75 seconds – 6.5 GB of 

lab data in 1 hr, largest to date is 11.8 GB



3 Lightning Talk, SciPy 2006, 17 August 2006

Data Reordering Requirements 
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Data is output serially – one frame 
is a string of 1,320,960 values.

Simple reformatting as a 
1290x1024 2-D array interleaves 
reference data with optical data –
produces “jail-bar” pattern and 
degrades compression ratio.

Instead, we can strip out the 
reference data and pack it onto the 
bottom, producing a 1032x1280 
pixel frame.
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Reordering Code Snippets

# Do all the setup stuff, file name checking, options, etc.

# Open a memory map to the data, int32 data type
m=np.memmap(fn,mode='r',dtype='i')

# Grab a frame and reshape it
a=(m[fm_beg:fm_end].copy()).reshape(1024,1290)

# Set up an index to address individual channels
z=np.arange(0,1289,5)+n

# Grab the 5 channels, add offset to index to change
c0=np.take(a,z+0,axis=1) ; … ; c4=np.take(a,z+4,axis=1)

# Reshape each to 3-D to set up interleaving
c1a=c1.reshape(1024,258,1) ; … ; c4a=c4.reshape(1024,258,1)

# A bit of trickery to reinterleave the data
x=np.concatenate((c1a,c2a,c3a,c4a),axis=2).reshape(1024,1032)

# Remember the reference? Reshape to append to the bottom
y=c0.reshape(256,1032)

# Produce the final frame
z=np.concatenate((x,y),axis=0)

# Add it to the output cube and when finished, write to a FITS file
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Fitting Slopes To All Pixels

• Pixels integrate signal 
approximately linearly

• Sample the output of each 
pixel once per frame time

• Processed signal level (i.e. 
image) is obtained by fitting 
a slope to each of the > 1 
million pixels

# Set up slope factor argument, t = time per frame, n = number of frames
arg=12./t/(n**3-n)

# Create summing array of zeroes
sum=np.zeros((ny,nx),dtype=‘f’)

# Loop through the frames; multiply each frame by weight and then sum
for i in range(n) :

sum=sum+(i-(n-1.)/2.)*frames[i,:,:].astype(‘f’)

# Multiply by factor and return
return arg*sum
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The Choice of Python + Numpy

• Needed the ability to explore “how to”
process the data, not to just do it
– C & Fortran – too long a development time
– IDL – too expensive to run everywhere

• Numpy (and numarray) have a rich set of 
N-dim features
– Concatenating, transposing, and reshaping 

with specific axes can produce complex 
dataset transforms

– Trivial extractions allow the examination of 
individual frames or pixels from data cubes

• All preliminary processing software in 
python + numpy + matplotlib
– More rigorous processing algorithms are 

now in IDL, but are informed by the python 
code

A weak attempt at a smiley 
face with an engineering-
grade detector


